Perspectives in the coordinate regulation of cell cycle events in Synechococcus.
نویسنده
چکیده
The concepts of cell theory and the notions of coordinate regulation of the cell cycle have been known for centuries but the conundrum of coordinate regulation of the cell cycle remains to be resolved. The unique characteristics of the cell division cycle of Synechococcus, a photosynthetic bacterium, suggest the existence of a complex network of light/dark responsive gene regulatory factors that coordinate its cell cycle events. Evaluation of the highly ordered cell cycle of Synechococcus led to the construction of workable models that coordinate the cell cycle events. A central issue in bacterial cell growth is the elucidation of the genetic regulatory mechanisms that coordinate the cell cycle events. Synechococcus, a unicellular cyanobacterium, displays a peculiar cell growth cycle. In the light growth conditions, a highly ordered and sequentially coordinated appearances of r-protein synthesis, rRNA synthesis, DNA replication, chromosome segregation, and cell septum formation occur (Figs 1, 2A). Cell membrane syntheses occur predominantly during mid-cell cycle and cell division period. Synthesis of thylakoid (=photosynthetic apparatus) is thought to occur during mid-cell cycle and coincides with a period of peak phospholipid synthesis and oxygen production (Csatorday and Horvath, 1977; Asato, 1979). Cell wall syntheses occur in short discontinuous periods throughout the cell cycle and during cell division (Asato, 1984). Distinct D1 (=G1), C (S) and D2 (=G2) periods as defined by Cooper and Helmstetter (1968) are observed in synchronized cultures of Synechococcus (Asato, 1979). When light grown cultures are placed in the dark, the ongoing cell cycles are aborted in the dark (Fig. 3A) and cell divisions do not occur (Asato, 1983; Marino and Asato, 1986). Upon re-exposure of the cell cultures to the light growth conditions, about 14 h later, new cell cycles are re-initiated. These characteristics of cell growth are considered to be expressions of a unique strategy of obligate phototrophic mode of growth to perpetuate their species (Asato, 2003). Nevertheless, the intermediate metabolism, the synthesis of building block molecules, the genetics and molecular biology in the formation of major macromolecules are similarto heterotrophs such as E. coli. In any case, the genes that are involved in the formation of the cellular structures and the genes that control the orderly appearances of the cell cycle events must be coordinated by novel genetic mechanisms. Currently, there are no known physiological/physical mechanisms, growth rate dependent factors or traditional genetic regulatory mechanisms that could explain the coordinate regulation of the cell cycle events in bacteria (Newton and Ohta, 1992; Vinella and D'Ari, 1995; Donachie, 2001; Margolin and Bernander, 2004). Because the genetic mechanisms of coordinate regulation of cell cycle events in bacteria are largely unexplained, the questions on how Synechococcus coordinates the cell cycle events present a difficult problem to resolve. Nevertheless, the problems with regard to the coordinate regulation of the cell cycle events of Synechococcus must be considered. Possible solutions are developed and described in this article. The proposed schemes do not exclude the formation of other genetic mechanisms on the regulation of cell cycle events in Synechococcus. Although the cell cycle of Synechococcus is not widely known, the issues on the coordinate regulation of the cell cycle events are not trivial since similar regulatory mechanisms most likely occur in other prokaryotes.
منابع مشابه
Control of ribosome synthesis during the cell division cycles of E. coli and Synechococcus.
The regulation of ribosome synthesis has been investigated for nearly five decades. In earlier studies, the control of rRNA synthesis in bacteria was found to be dependent on nutrient composition of the growth media or cell growth rates, and these observations led to the growth rate-dependent regulation model. Also developed were stringent control, feedback ribosome synthesis, passive regulatio...
متن کاملCircadian gating of the cell cycle revealed in single cyanobacterial cells.
Although major progress has been made in uncovering the machinery that underlies individual biological clocks, much less is known about how multiple clocks coordinate their oscillations. We simultaneously tracked cell division events and circadian phases of individual cells of the cyanobacterium Synechococcus elongatus and fit the data to a model to determine when cell cycle progression slows a...
متن کاملCYTOKINE AND GROWTH FACTOR MODULATION OF CELL CYCLE EVENTS IN HUMAN MELANOMA CELL LINES
Cytokines influence cell cycle events, which in some but not all instances can be associated with melanoma progression. Analysis of the G0/G 1 and S phase fractions of the cell cycle was used to assay the proliferative or inhibitory activity of cytokines against ten human melanoma cell lines, including pairs of cell lines derived from primary and metastatic tissue of individual patients. Cy...
متن کاملافزایش اثرات درمانی سیس پلاتین و 5- فلورواوراسیل بر روی ردههای سلولی AGS و KYSE-30 با استفاده از تیمار ترکیبی رتینوئیک اسید تمام ترانس
Backgrounds and Objectives: All-trans retinoic acid (ATRA) which is a derivative of vitamin A, exert fundamental effects on regulation of cell growth, differenation and apoptosis. Recently, resistance to cisplatin and 5-fluorouracil developed in gastric adenocarcinoma and squamous cell carcinoma. In this study, we investigated the combination treatment of ATRA with cisplatin and 5-fluorouracil ...
متن کاملA New Reporter Gene Technology: Opportunities and Perspectives
The paper summarizes the current status of the reporter gene technology and their basics. Reporter gene technology is widely used to monitor cellular events associated with gene expression and signal transduction. Based upon the splicing of transcriptional control elements to a variety of reporter genes, it “reports” the effects of a cascade of signaling events on gene expression inside cells. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current issues in molecular biology
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2006